标签归档:cudatoolkit

CUDA、cudatoolkit和cuDNN的关系

什么是CUDA、cudatoolkit和cuDNN

CUDA: Compute Unified Device Architecture. 是NVIDIA用于GPU的并行计算平台和编程模型。Nvidia官方提供的CUDA 库是一个完整的工具安装包,其中提供了 Nvidia驱动程序、开发 CUDA 程序相关的开发工具包等可供安装的选项。

Anaconda 安装的 cudatoolkit,其主要包含应用程序在使用 CUDA 相关的功能时所依赖的动态链接库。

cuDNN: GPU-accelerated library of primitives for deep neural networks. 是NVIDIA用于DNN的GPU加速库。

CUDA 与 cudatoolkit 的区别

Nvidia 官方提供安装的 CUDA Toolkit 包含了进行 CUDA 相关程序开发的编译、调试等过程相关的所有组件。但对于 Pytorch 之类的深度学习框架而言,其在大多数需要使用 GPU 的情况中只需要使用 CUDA 的动态链接库支持程序的运行,就像常见的可执行程序一样,不需要重新进行编译过程,只需要其所依赖的动态链接库存在即可正常运行。在安装了 cudatoolkit 后,只要系统上存在与当前的 cudatoolkit 所兼容的 Nvidia 驱动,则已经编译好的 CUDA 相关的程序就可以直接运行,而不需要安装完整的 Nvidia 官方提供的 CUDA Toolkit。

Tensorflow各版本对应的cuda, cudatoolkit, cudnn

版本 Python 版本 编译器 构建工具 cuDNN CUDA
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0 8.0 11.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0 7.6 10.1
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0 7.6 10.1
tensorflow-2.1.0 2.7、3.5-3.7 GCC 7.3.1 Bazel 0.27.1 7.6 10.1
tensorflow-2.0.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.15.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.14.0 2.7、3.3-3.7 GCC 4.8 Bazel 0.24.1 7.4 10.0
tensorflow_gpu-1.13.1 2.7、3.3-3.7 GCC 4.8 Bazel 0.19.2 7.4 10.0